CULTURAL HERITAGE OF SMALL HOMELANDS Food heritage – Seminar I. 4.3.2019 Nitra, Slovakia

Introduction to genetic identification of animals using low and high density data

Nina Moravčíková

About this presentation

- Part 1: Analysis of diversity based on microsatellites
 - 1.1 Data manipulation
 - 1.2 Intro to diversity analysis
 - 1.3 Analysis of population structure and visualisation in R
 - 1.4 Practical exercise
- Part 2: Analysis of diversity on genome-wide level using SNPs
 - 2.1 Intro to PLINK
 - 2.2 Data processing in PLINK
 - 2.3 Analysis of population structure and visualisation in R
 - 2.4 Practical exercises

Part 1: Analysis of diversity based on microsatellites

1.1 Data manipulation

From biological samples to genetic analysis

- 1) isolation of genomic DNA from biological samples (blood, hair roots, semen,) in lab
- 2) lab identification of animals' genotypes by moleculargenetic methods based on use of genetic markers (microsatellites, SNPs, etc.) showing polymorphism
 - <u>genetic polymorphism</u> occurrence of two or more genetically determined phenotypes in the same population
- 3) the quality control of genotyping data and development of input databases depending on the type of data
- 4) analysis of genetic diversity

1.2 Intro to diversity analysis

- frequency of alleles and genotypes
- Hardy Weinberg equilibrium in population (χ^2 test,)
- · heterozygosity and homozygosity
- effective number of alleles
- · polymorphic information content
- Wright's F statistics: F_{IS} (f, molecular equivalent of pedigree inbreeding), F_{ST} (genetic relationship between pops) a F_{IT} (total inbreeding in metapopulation)
- genetic distance (Nei's D_a,)
- analysis of molecular variance (AMOVA)
- · analysis of principal components (PCA)

1.2 Intro to diversity analysis

Input data in genepop format

Genepop

- · one of the most commonly used format of data
- Genetix, Genepop, Arlequine, various R packages

1.2 Intro to diversity analysisAnalysis based on the frequency of alleles

Frequency by Pop: outputs allele frequencies at each locus by population

Frequency by Locus: outputs allele frequencies in each population with loci in columns

1.2 Intro to diversity analysisAnalysis based on the frequency of alleles

Heterozygosity

- Observed
- Expected

Wright's F statistics (F_{IS}, F_{ST} and F_{IT})

1.2 Intro to diversity analysis

Analysis of diversity on intra- and interpopulation level

Basic indices:

- MNA mean number of alleles per populations and loci
- ENA effective allele number per populations and loci
- AR total number of alleles per loci within each population
- Heterozygosity average number within and across populations
- Koeficient of inbreeding (F resp. F_{IS}) within and across populations
- F statistics
- AMOVA (analysis of molecular variance)

1.2 Intro to diversity analysisAnalysis of population genetic structure

Nei's genetic distances

Wright's F_{ST} index

Analysis of principal components (PCA)

 multivariate technique that allows one to find and plot the major patterns within a multivariate dataset e.g. multiple loci and multiple samples

- > R Studio
- ➤ Free ...
 - ...case sensitive!
 - ...opposite slashes than Windows defaults
- ➤ Package Adegenet

1.4 Practical excercise

- Your turn!
- Task description:
 - 1. How many populations and markers are stored in testset 2?
 - 2. Compute basic diversity indices for each of analysed population
 - 3. Make AMOVA analysis
 - 4. Make PCA analysis.
 - 5. Make DAPC analysis and visualise the group assignment probability of individuals
 - 6. Plot the relationships between individuals using NJ unrooted tree

Part 2: Analysis of diversity on genomewide level using SNPs

2.1 Intro to PLINK

- **PLINK** is a free, open-source whole genome association analysis toolset
- to perform a range of basic, large-scale analyses in a computationally efficient manner

2.1 Intro to PLINK

- Runs in the command line and/or using R
- In Windows, Linux and Mac
- Options preceded by double dash "--"
- All options: http://pngu.mgh.harvard.edu/~purcell/plink/refere
 <a href="http://pngu.mgh.harvard.edu/~purcell/plink/refere
 http://pngu.mgh.harvard.edu/~purcell/plink/refere
 http://pngu.mgh.harvard.edu/~purcell/plink/refere
 http://pngu.mgh.harvard.edu/~purcell/plink/refere
 http://pngu.mgh.harvard.edu/~purcell/plink/refere
 http://pngu.mgh.harvard.edu/~purcell/plink/refere
 <a href="http://pngu.mgh.harvard.edu/~purcell/plink/refere</

2.2 Data processing in PLINK using R Data manipulation

• Task: Quality control of genotyping data

QC criteria

- 1. missing genotypes per sample max. 10 %
- 2. min. SNPs call rate 90 %
- 3. min. minor allele frequency (MAF) 0.01

• Task: load data in to R and run analysis

load library for adegenet

load input data

run DAPC analysis

2.3 Analysis of population structure and visualisation in R

Task: load data in to R and run analysis

visualise differentiation between pops based on first two DFs

visualise differentiation between pops based on first DF

change colours in picture

• Task: load data in to R and run analysis

make barplot to represent the group assignment probability of individuals to several groups

without spaces between columns in barplot

2.3 Analysis of population structure and visualisation in R

• Task: plot simple neighbour-joining (NJ) tree

load library for adegenet

perform the neighbor-jugining tree estimation

plot NJ tree

change type of tree

- Your turn!
- · Task description:
 - 1. Make QC of data and create new dataQC.ped and .map file
 - filter out all of animals and SNPs with more than 10% of missing data and $\ensuremath{\mathsf{MAF}}\xspace<0.01$
 - 2. Create input file for adegenet
 - 3. Make DAPC analysis and visualise the group assignment probability of individuals
 - 4. Plot the relationships between individuals using NJ unrooted tree $\,$

Thank you for your attention!